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Synposis: Monte Carlo and Bootstrap methods provide powerful statistical tools for determining the effects of background noise in diffusion weighted imaging (DWI) 
data on diffusion tensor MR imaging (DTI) -derived parameters, and for optimizing the design of DTI experiments. These empirical methods do not provide analytical 
relationships between the variance of the distribution of noise in the DWI data and the variance of DTI-derived parameters. Here we use the 1st-order matrix 
perturbation method to determine how noise in DWI data affects the uncertainty in the estimated tensors. Monte Carlo simulations of DTI experiments are performed to 
validate these formulae, and to determine their applicability over a broad range of experimental design parameters   
Introduction: In typical applications of diffusion tensor MRI (DTI), DT-derived quantities are used to make a diagnostic, therapeutic or scientific determination. In 
such cases, it is essential to characterize the variability of these tensor-derived quantities. Parametric [1] and empirical methods (e.g., Monte Carlo [2] and Bootstrap 
[1]) have been proposed to estimate the variance of the estimated DT, and quantities derived from it.  The former method is not general since a parametric distribution 
cannot be found for all DT-derived quantities. The bootstrap requires oversampling diffusion weighted imaging (DWI) data. Statistical perturbation methods [3-5] 
represent a hybrid between parametric and empirical approaches and overcome the primary limitations of both methods. Here we use 1st-order perturbation method to 
obtain analytic expressions for the variance of DT-derived quantities, such as the Trace, FA, eigenvalues and eigenvectors for a given experimental design. Monte Carlo 
simulations of DTI experiments are performed to test these formulae, and to determine the range of applicability for different experimental design parameters, e.g., 
SNR, diffusion gradient sampling scheme, and number of DWI acquisitions. This information should be useful in designing DTI studies or for assessing the quality of 
inferences drawn from them.  
Method: Let y = {ln(S1),…, ln(SN)}T, where Si is the intensity measurement in a DTI acquisition, and α = {Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, ln(A0)}T contains the DT model 
parameters. To 1st order, the log linear model [6] can be written as eBαy += , where B is the b-matrix with the jth row equals { }1,2,2,2,,, −− yzjxzjxyjzzjyyjxxj bbbbbb  and 

e is the error vector. The covariance matrix of e is a diagonal matrix with ( ) 22
iiii Sσ=Σe . The weighted least squares solution of α is given by 
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symmetric 3×3 unperturbed tensor matrix and the estimated tensor D= D0 + ∆D, where iiii ,
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perturbation analysis [7-9], one can compute the uncertainty for each eigenvalue 〉〈=〉Δ〈 Δ 22 )()( i
T
ii εDελ , where λi is the ith eigenvalue and εi is its eigenvector. The 

uncertainty of other tensor derived quantities such as Trace and FA can be computed by applying the error propagation theory [10]. If we assume D0 comes from the 
biological tissue with high diffusion anisotropy, i.e., λ1>λ2 and λ1>λ3. It can be also shown the perturbation of the eigenvector associated with the largest eigenvalue is 
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Simulations: Monte Carlo simulations were performed to test the proposed approximations. We simulated cylindrically symmetric anisotropic DTs with diffusivity in 
the x direction set to 3, 5, and 7 times the diffusivity in the y and z directions. The Trace was representative of that in brain parenchyma (2.1 x 10-3 mm2/sec). According 
to Jones [11] at least 30 unique sampling orientations are required for rotationally invariant statistical properties of the estimated DT-derived quantities. Therefore, we 
tested the 30 direction scheme [12] with 35 b-values (5 with b=0, and 30 with b=1000 s/mm2) and SNR ranged from 5 to 100. We also tested the same scheme but with 
2, 4, and 8 replicates (70, 140, and 280 b-values).  For each pre-defined DT we created synthetic DW data conforming to the DTI model [1]. Gaussian distributed noise 
was then added in quadrature to the synthetic noise-free signal to achieve various SNRs in the non-diffusion weighted (b=0) data. To assess the precision and accuracy 
of the estimated uncertainty using the proposed analytic formulae in clinical DT-MRI brain data, we acquired DWIs from a health volunteer using a high angular 
scheme. Robust tensor fitting [13] was also used to obtain the DT estimates. Those pre-computed DT volume data combined with an assumed set of standard b-matrices 
are then used to back-project a DWI data set using the linear tensor model [6] for an assumed experimental design with a 30-direction sampling scheme with b=1000 
and 5 non-diffusion weighted images with SNR=10.    
Results and Discussion: Figure 1 shows the computed θRMS using both Monte Carlo (MC) methods and the analytical formulae (AF) for various given anisotropic DTs 
at different SNRs. The uncertainty decreases as the anisotropy or SNR increases. The trends in the AF and MC are consistent. Both empirical and analytical methods 
predict a power law scaling relationship: θRMS ∝ SNR-1. This result is empirically given by the MC method, but is analytically derivable from the formulae given above.  
Figure 2 shows the estimated θRMS decreases as more DWIs are used and, again, the trends for the AF and MC are consistent. Both approaches also predict a power law 
scaling relationship: θRMS ∝ N-1, where N is the number of DW replicates. Figure 3 shows the estimated standard deviation of FA using AF and MC. This result 
demonstrates that the estimated uncertainty of FA using AF and MC is similar in most of the brain regions and is over-estimated by AF in the low anisotropic regions.     

  
 

Fig. 1 The logarithmic (base 10) transformed θRMS 
computed using MC and AF for different SNRs 
and various predefined anisotropy [λ1:λ2:λ3] (with 
Trace= 2100 μm2/sec).  

Fig. 2 The logarithmic (base 2) transformed θRMS 
computed using MC and AF for different SNRs 
with different number of replicates. The predefined 
tensors α are [1500, 300, 300, 0, 0, 0] μm2/sec.  

Fig. 3 The uncertainty map (here we show the standard deviation of estimated 
FA) calculated using AF (b) and MC (c), images were scaled between 0 and 
0.5. The FA map (a) is shown here for the reference (scaled between 0 and 1). 

  
Conclusion: We have validated the proposed analytic formulae using Monte Carlo methods. The analytic error propagation approach is a powerful tool in the DT-MRI 
data analysis and experimental design in estimating the uncertainty in diffusion tensor and its derived quantities, particularly when studying Regions of Interest (ROI). 
The proposed formulae provide a quick, accurate estimate of the uncertainty for a given tensor and SNR. This information should be helpful in selecting an optimal 
experimental design for longitudinal and multi-center DTI studies.   
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